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Introduction. The colllslonless deceleration of an ionized cloud expanding in a uni- 
form plasma in a magnetic field has been considered in [1-7]. In [1-4] the case was con- 
sidered where the plasma surrounding the cloud does not significantly affect the motion of 
the cloud and its deceleratlon results from interaction with the magnetic fleld. It was 
shown that the characterlstlc,deceleration distance Ro of the cloud by the magnetic field 
is given by Ro = (Nxmlv~/H~) I/s, where Nx is the total number of particles in the cloud, 
ml is the mass on an ion in the cloud, vo is a characteristic dispersion velocity, and Ho 
is the magnetic field strength. The condition that the effect of the surrounding plasma on 
the motion of the cloud be small can be obtained as follows. For a strong interaction be- 
tween the dispersing cloud and the plasma, the characteristic dSstance R, over which the 
cloud decelerates is given by the relation R, = (3N1el/4~n,ea) L/s, where el and ea are the 
charges of ions in the cloud and plasma, respectively, and n, is the concentration of ions 
in the surrounding plasma [5]. Obviously the effect of the external plasma can be ignored 
when R, >> Ro. This condition will be satisfied when the Alfven-Mach number MA= vo/v A << 1, 
where v A=H0/~4~m ~ is the Alfven velocity in the external plasma and m= is the mass on 
an ion in the plasma. 

When M A >> 1 the dominant effect in the deceleration of the cloud becomes its interac- 
tion with the plasma. This problem has been considered in [6, 7] for the case of a cylin- 
drical explosion. In [6] the treatment was based on the Chew-Goldberger-Low equations [8], 
which apply when the characteristic distance scale of the flow is much larger than the Lamour 
radius of the ions. In [7] the problem was treated using the one-dlmenslonal hybrid model 
of [9-11] in which the motion of the ions is treated wlth the Vlasov equation, and the elec- 
tron component of the plasma is described as an inertlaless fluid. The strength of the in- 
teraction between the cloud and the plasma was studied as a function of the ratio RHx/R, 
for M A >> 1, where RHI = vo/(eiHo/mlc) is the Lamour radius of the ions in the cloud. 

In laboratory conditions the cloud of plasma actually disperses practically from a 
point, so that we have a point explosion and not a cyllndrical one. In the deceleration of 
a cloud from a point explosion, two-dimenslonal effects can become important because the 
motion of ions along the magnetic field is completely different from the motion perpendlcular 
to it. 

In the present paper we use the two-dlmensional hybrid model of [12] to treat the eol- 
lisionless deceleration of a cloud of plasma from a point explosion. Assuming that the in- 
teraction of the cloud with the surrounding dilute plasma comes about through the rotational 
component of the electric field [7], we obtain the basic deceleration mechanisms and these 
mechanisms are supported by numerical calculations. 

1. Statement of the Problem. The physlcal model describing a point explosion in a 
dilute plasma in a magnetic field is the same as the model used in [7] in the solution of 
the cylindrical explosion problem. In this model the motion of the ions is described by 
the Vlasov equation. 

'~f'-l v ~  q- m= \ ~  o/= ~ (EL I_. !c [vH]/~-v = O, ( i . i )  

where f~ is the distribution function of ions of type a; u = i corresponds to the cloud and 
u = 2 to the surrounding plasma. 

The average characteristics are given by 
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t ~ [ ~ v d v .  

The equation ot motion ~or the electrons is 

(] . .2)  

E .  __t [v~H] = 0, (1.3:1 
i C 

where v e is the velocity of the electron "fluid" and E is the electric field. We ignore 
the inertia and pressure of the electrons and also the loss of electron energy from elec- 
tron-ion interactions. 

The quasineutrality condition of the plasma is assumed to hold: 

ene ---- ~ e~n~. (I. 4) 

The time evolution of the electric and magnetic fields is described by the Maxwell equations 
in the quasistationary approximation 

I ori 4~. (1.5) 
c ot : - - r o t E ,  rotH_---7- L 

where j is the current density, which with the help of the quasineutrality condition can 
be written in the form 

j = Y ,  e a n a  (va --  re). (1 .6 )  

The conditions under which this model is applicable are discussed in [7]. The initial con- 
ditions for equations (i.i) through (1.6) are chosen to describe a point explosion into a 
uniform plasma : 

/ l ( r ,  v ,  t = 0) = N 1 6 ( r ) r  

[o.(r, v, t = 0 )  = n.8 (v), H(r ,  t =  0 ) =  He, (1 .7 )  

where v =Iv], ~(v)dv = I , and 5(x) is the Dirac delta function of vector argument. 

2. Interaction of the Expanding Cloud with the Surrounding Medium for Large Alfven-- 
Mach Numbers. We estimate the interaction of the expanding cloud with the plasma using ......... 
(as in [7]) the conservation of the azimuthal component of the generalized momentum for the 
charged particles in the axially symmetric magnetic field. In spherical coordinates r, e, 
~with the symmetry axis along 0 = 0 this conservation law takes the form 

% Ar = r o s i n 0  o v % - - ~  %),  (2 .1 )  r sin 0 v~ + ,,---~ 

where quantities with subscript 0 refer to the initial instant of time. A~ is the azimuthal 
component of the vector potential of the magnetic field: H = rot A. 

From (1.3) through (1.6) the following equation is obtained for A: 

o--f = e ~ n ~ v ~  - -  4aen----~ 

Le t  the  s p a t i a l  s c a l e  o v e r  which  t h e  magne t i c  f i e l d  changes  be R , ,  t hen  the  r a t i o  o f  the  

c _~i ~ will be proportional to M~ a and when term 4~%erOtrotA in (2.2) to the term ent~,~= e=n=v= 

M A >> I we can use in place of (2.2) the approximate equation 

O-'Y -~ en-'-~ e ~ n ~ v ~ ,  rot A . ( 2 .3 )  

When the interaction between the cloud and surrounding plasma is weak, the Vlasov equations 
for the ions and equation (2.3) can be solved by successive approximation. 

Ignoring the effect of the fields on the motion of the ions and using the initial con- 
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ditions on the distribution functions f,, f2 as given by (1.7) we have 

/, (r , v, t) = N,8 (r --  vt) , (L~ ), ( 2 . 4 )  

A (r, v, t) = n,6 (v). 
The average characteristics of the plasma corresponding to these distribution functions 
are, in spherical coordinates 

(+) r n,=Nxt-s~ , vxr=-F, vx~=vxo=O, (2.5) 

n~ = n., V2r --- V~S ---- V2~ = O. 

Since  n a ,  Va t  do n o t  depend on 0, V, and v a 0 ffi Vce ~ ffi 0 ,  ( 2 . 3 )  r e d u c e s  t o  a s i n g l e  e q u a t i o n  
for the only nonzero component of the vector potential 

A ,  = A ( r ,  t)  sin O. 

Using (2.5) we obtain the following equation for A(r, t) 

For arbitrary ~ (r/t) 
r § ~ is 

. . e, N 1 . [  r \ t r Or ( A r )  = 0. ( 2 . 6 )  

the solution of (2.6) satisfying the condition A(r, t) § Hot/2 at 

I 
O, O<~ r ~ r * ,  

A ( r , t ) =  [--~'r tI~ 3+ 4~o~*(v) v ' d v - - ! l  , r*<~.r. ( 2 . 7 )  

R,  = (3elN / 4~n,e~) 1/8, 

and r* satisfies the equation 

r*/t (r . l ,  
~ , l  + 4~ ~ , (v) v~'dv --  t = O. 

0 

A physical interpretation of this solution is given in [7]. 

Knowing the azimuthal component A~ of the vector potential, we can estimate the energy 
transferred from the dispersing cloud to the ions of the medium. In the approximation con- 
sidered here, only the azimuthal component of the electric field E~ will be nonzero for r* 
<~.r < ~. Assuming as in [7] that the ions of the medium suffer only small displacements in 
the r and 8 directions from the initlal position re, 8,o, and using (2.1) we obtain 

v2~ = (e~/crn~)(Hor/2 --  A(r, t)) sin O, ( 2 . 8 )  

where  A ( r ,  t )  i s  g i v e n  by ( 2 . 7 ) .  

Then the total energy W2 transferred from the cloud at time t is given by 

W2=m2n.~2~s inOdO~r2d r v~ 2 " 
0 0 

Using the above expression for V2~ we obtain 

r * / R *  L.  0 

( 2 . 9 )  

It is easily seen that in the limit t § = W2 approaches the following limit independent 
of the function ~(v): 
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{:i, 1 i e2 2 5 W2~ : "-~ n n ,  ~ H o B ,  _}_ x ~ - _ (x ~ _ l)2/3]~dx . (2.10) 
C"B?2 1 

Since the total initial energy of the cloud particles is Wo = N 1 m 1 2 n f r  we obtain 

the following result for the fraction of energy transferred from the ~loud to the medium: 

W ~  i B2 
-- * I =  t (2.11) 

W o 2 r~ r~ "T 16, 
- 1 2 . . . .  

where rn~ = v / ( e x H o / m l c ) ,  rH~ = v~/(e2lto/m2c ) are  the  Lamour r a d i i  for  ions  in  the  cloud and medium, 
r e s p e c t i v e l y ,  vl  = (2Wo/Nf faO~/*;  and f i n a l l y  

l i  I = --g- + [x  2 - -  (x  3 - -  l)'"3]~'dx "~ 0.7t. 
t 

Thus the  f i n a l  f r a c t i o n  of  energy t r a n s f e r r e d  does not  depend on the  d e t a i l s  of  the  i n i t i a l  
velocity distribution of cloud particles, but is determined only by the average characteris- 
tics of the cloud and surrounding plasma. 

The above results are generally correct only when W2JWo << |, i.e., when the interac- 
tion is weak. However (2.11) can be used to estimate the value of ~ for which the inter- 
action becomes strong. Putting W2~o/Wo = i we find 8 = 2/I~--- 2.8 . It is of interest to es- 
timate the fraction of energy transferred to the medium in the interval of angles (8, 8 + 
dS). This will be given by the ratio Was/W, 8 where 

Wxo = N l r a l n  sin OdO S ~ (v) v*dv; 
0 

W , o  = m ~ n , ~  sin OdO S r ~ d r v ~ .  
0 

Using the above expression for ~ 

From the condition W~o-~ W~O 
weak interactions: 

and the definition of the parameter 8 we have 

W~o/WIo = (3/4)81 sin ~ O, (2.12) 

we can find the angle O, dividing the regions of strong and 

. [  4 V/* 
O, = a r c s m  k ' - ~ - j  " (2.13) 

For 090, the interaction of the cloud and the surrounding plasma leads to practically a 
total transfer of energy from cloud to medium; for e < e, the medium is weakly perturbed 
and does not affect the motion of the cloud particles. 

3. Results of the Calculations. In the numerical solution of (i.i) through (1.6) 
(the hybrid model with initial conditions corresponding ot a point explosion) we used the 
following units: vo, the maximum dispersion velocity of the cloud particles; Ho, the un- 
perturbed magnetic field strength; R~ 2 = ~/(ezHo/mzc), the Lamour radius of ions in the sur- 
rounding plasma in the unperturbed field; n,, the concentration of ions in the surrounding 
plasma, ma, e2, their mass and charge. The function O(v) was chosen to be 

3 O(vo--v), 
r (v) = 4~v--~o 

where 

O(z) ={1, x~>O, 
0, x < 0 .  

In these units the initial distribution functions are given by 
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( ~ ) / e \5,2/m \8/2 ~ 

]~ ( r ,  v ,  t = O) = 8(Vr)6(VO)8( '~) .  

We r a n  two s e t s  o f  c a l c u l a t i o n s  f o r  p a r a m e t e r s  g i v e n  by mJm2 = t ,  e~/e 2 = 1, 8 = 4.2 and 
mt/m~ = 2, e~/e2 = t,  ~ = 1.33.  The two s e t s  c o r r e s p o n d  to  e x p l o s i o n s  o f  t h e  same e n e r g y  and 
same amount o f  d i s p e r s i n g  m a t e r i a l .  The s u r r o u n d i n g  med ia  a r e  a l s o  i d e n t i c a l ,  and t h e  o n l y  
d i f f e r e n c e  i s  t h a t  i n  t h e  s econd  s e t  t h e  c l o u d  p a r t i c l e s  a r e  t w i c e  t he  mass  o f  t h o s e  i n  
the first se~. We used the value M A = i0 for both sets of calculations. 

The results are shown in Figs. 1-6. For ease in interpreting the graphs the quantity 

B,, = (3N,m/4~n,m2) 1/~ 

was used as a scale of length. In Fig. i we show the time dependence of the energy of the 
dispersing cloud obtained numerically (solid curves) and with the use of (2.9) (dashed : 
curves); curves i and 2 refer to the case mi/m2 = 2, curves 3 and 4 to mx/ma = i. We see 
the close correspondence between the calculated and approximate curves for the case m,/m2 
for practically all values of the time; for the case m,/m= i the agreement is good only at 
small times when the fraction of energy transferred is small: ( W 0 -  W1)/Wo <~ 0,5 �9 

In Fig. 2 we show the dependence on 8 of the energy transferred to the surrounding 
plasma per unit solid angle at time t = 2Rm/vo. The solid curves give the calculated de- 
pendence, the dashed curves show the dependence 

W20 __W2e(O --_ -~-~ ) sin~ O, 
W10 ~- W10 

from (2.12). Curves I and 2 refer to mx/ma = 2; curves 3 and 4 to mx/m2 = i. The close 
correspondence between the numerical calculation and the approximate theory can be seen. 

In Fig. 3 the lines of force of the magnetic field in the plane ~ = const are shown 
for m,/m2 = 1 at time t = 4Rm/vo. In this plane the coordinates z and 0 are given in terms 
of r, e by the relations 

z = r c o s O ,  p = r s i n O .  

From Fig. 3 it is seen that the region where the magnetic field is squeezed out is, to a 
good approximation, spherically symmetric. The compression of the field (increase in density 
Of field lines) is maximum at the equator (8 = z/2) and decreases as we approach the poles 
(e = 0, ~). The dashed line in Fig. 3 shows the boundary of the region (in the plane ~ = 
const) occupied by cloud particles. This region has a remarkable shape. In the interval 
of angles e0~<9~<~--e 0 the boundary is a section of a sphere; in the angular intervals 
0-<~<9~e0 and ~--90~-<.e~<~ the boundary is strongly drawn out along the magnetic field 
lines. The size of the region in this direction will be determined by the freely moving 
particles and will be proportional to t. The maximum size of the region occupied by parti- 
cles in the direction transverse to the external magnetic field is determined by the Lamour 
radius of the particles initially moving perpendicular to the field. In Fig. 3 the angle 
8, dividing the regions of strong and weak interactions is also shown; its value is calcu- 
lated from (2.13). The agreement between 8, and 8o is seen to be satisfactory. 

In Figs. 4-6 the dependence of the components Hr, He, H~ on r for different values of 
e is shown. The curves are drawn for m,/ma = i, and time t = Rm/vo. As expected, the maxi- 
mum perturbations H r and H 8 are observed near 8 = ~/2. The maximum value of the magnetic 
field component H~ is reached near 8 = ~/4; this is because H~ = 0 for the unperturbed field 
and in the first approxlmation~{~ is generated by the components Hr, H 8 calculated with the 
vector potential Ar (2.7). Since HrNcos O, He ~sin O we see thatHCNcos 9sin 9. 

Our results lead to the following conclusions. For a point explosion into a dilute 
plasma in a magnetic field, if the Alfven--Mach number M A is large, the strength of the in- 
teraction between the dispersing cloud and the surrounding plasma is determined by the param- 

eter 8 = R,/R~,R~s. In the interval of 8given by 8.9,~<%~._~.~--8, where 8, = arcsin~! l' 

the interaction is strongest and the plasma flow is spherically symmetric so that two-dimen i 
sional effects are unimportant. Outsidethis interval of angles, the ions of the dispersing 
cloud move in an almost unperturbed magnetic field with practically no loss of energy. 
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Design of high-temperature gas heaters with given characteristics is hindered by the 
lack of applicable models closely adapted to real conditions. This applies particularly to 
electric-arc plasma sources that produce thermally nonequilibrium plasma. Theoretical 
studies have been made [1-6] of the arc characteristics in the two-temperature approximation 
for the initial and steady-state parts. However, most of these are restricted to arc burning 
in the absence of a flow [i, 3] and laminar gas flow in the discharge channel [2, 4, 5], while 
in [4] the calculations were performed with a very crude approximation in order to obtain a 
simple solution. The most accurate analysis is to be found in [2, 5], while in [6] there 
is an estimate of the effects from turbulence. No detailed analysis has been made of the 
effects of the transition from laminar flow to turbulent on the characteristics of a two- 
temperature flow of electric-arc plasma. Also, the properties of the plasma have been de- 
rived from formulas that are not always reliable, which substantially hinders examination of 
the accuracy and applicability of the results. 

We have examined the effects of laminar and turbulent flow on the characteristics of a 
two-temperature argon plasma in the steady-state part of an electric arc in a cylindrical 
channel. We have examined the existing formulas for the plasma properties and have selected 
those that agree best with experiment. 

It has been found that the following system of equations can be used to describe the 
phenomena occurring in an electric arc stabilized by the walls of a cylindrical channel and 
bearing a longitudinal gas flow: 
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